413 research outputs found

    Comments on Condensates in Non-Supersymmetric Orbifold Field Theories

    Get PDF
    Non-supersymmetric orbifolds of N=1 super Yang-Mills theories are conjectured to inherit properties from their supersymmetric parent. We examine this conjecture by compactifying the Z_2 orbifold theories on a spatial circle of radius R. We point out that when the orbifold theory lies in the weakly coupled vacuum of its parent, fractional instantons do give rise to the conjectured condensate of bi-fundamental fermions. Unfortunately, we show that quantum effects render this vacuum unstable through the generation of twisted operators. In the true vacuum state, no fermion condensate forms. Thus, in contrast to super Yang-Mills, the compactified orbifold theory undergoes a chiral phase transition as R is varied.Comment: 10 Pages. Added clarifying comments, computational steps and a nice pretty pictur

    Lattice determination of the critical point of QCD at finite T and \mu

    Get PDF
    Based on universal arguments it is believed that there is a critical point (E) in QCD on the temperature (T) versus chemical potential (\mu) plane, which is of extreme importance for heavy-ion experiments. Using finite size scaling and a recently proposed lattice method to study QCD at finite \mu we determine the location of E in QCD with n_f=2+1 dynamical staggered quarks with semi-realistic masses on Lt=4L_t=4 lattices. Our result is T_E=160 \pm 3.5 MeV and \mu_E= 725 \pm 35 MeV. For the critical temperature at \mu=0 we obtained T_c=172 \pm 3 MeV.Comment: misprints corrected, version to appear in JHE

    Bulk Universality and Related Properties of Hermitian Matrix Models

    Full text link
    We give a new proof of universality properties in the bulk of spectrum of the hermitian matrix models, assuming that the potential that determines the model is globally C2C^{2} and locally C3C^{3} function (see Theorem \ref{t:U.t1}). The proof as our previous proof in \cite{Pa-Sh:97} is based on the orthogonal polynomial techniques but does not use asymptotics of orthogonal polynomials. Rather, we obtain the sinsin-kernel as a unique solution of a certain non-linear integro-differential equation that follows from the determinant formulas for the correlation functions of the model. We also give a simplified and strengthened version of paper \cite{BPS:95} on the existence and properties of the limiting Normalized Counting Measure of eigenvalues. We use these results in the proof of universality and we believe that they are of independent interest

    The Electric Dipole Moment of the Nucleons in Holographic QCD

    Full text link
    We introduce the strong CP-violation in the framework of AdS/QCD model and calculate the electric dipole moments of nucleons as well as the CP-violating pion-nucleon coupling. Our holographic estimate of the electric dipole moments gives for the neutron d_n=1.08 X 10^{-16} theta (e cm), which is comparable with previous estimates. We also predict that the electric dipole moment of the proton should be precisely the minus of the neutron electric dipole moment, thus leading to a new sum rule on the electric dipole moments of baryons.Comment: 22 pages, no figures. v2: A reference and an acknowledgment added. v3: One more reference, to appear in JHE

    Physics of dark energy particles

    Full text link
    We consider the astrophysical and cosmological implications of the existence of a minimum density and mass due to the presence of the cosmological constant. If there is a minimum length in nature, then there is an absolute minimum mass corresponding to a hypothetical particle with radius of the order of the Planck length. On the other hand, quantum mechanical considerations suggest a different minimum mass. These particles associated with the dark energy can be interpreted as the ``quanta'' of the cosmological constant. We study the possibility that these particles can form stable stellar-type configurations through gravitational condensation, and their Jeans and Chandrasekhar masses are estimated. From the requirement of the energetic stability of the minimum density configuration on a macroscopic scale one obtains a mass of the order of 10^55 g, of the same order of magnitude as the mass of the universe. This mass can also be interpreted as the Jeans mass of the dark energy fluid. Furthermore we present a representation of the cosmological constant and of the total mass of the universe in terms of `classical' fundamental constants.Comment: 10 pages, no figures; typos corrected, 4 references added; 1 reference added; reference added; entirely revised version, contains new parts, now 14 page

    On the complexity of strongly connected components in directed hypergraphs

    Full text link
    We study the complexity of some algorithmic problems on directed hypergraphs and their strongly connected components (SCCs). The main contribution is an almost linear time algorithm computing the terminal strongly connected components (i.e. SCCs which do not reach any components but themselves). "Almost linear" here means that the complexity of the algorithm is linear in the size of the hypergraph up to a factor alpha(n), where alpha is the inverse of Ackermann function, and n is the number of vertices. Our motivation to study this problem arises from a recent application of directed hypergraphs to computational tropical geometry. We also discuss the problem of computing all SCCs. We establish a superlinear lower bound on the size of the transitive reduction of the reachability relation in directed hypergraphs, showing that it is combinatorially more complex than in directed graphs. Besides, we prove a linear time reduction from the well-studied problem of finding all minimal sets among a given family to the problem of computing the SCCs. Only subquadratic time algorithms are known for the former problem. These results strongly suggest that the problem of computing the SCCs is harder in directed hypergraphs than in directed graphs.Comment: v1: 32 pages, 7 figures; v2: revised version, 34 pages, 7 figure

    Gamma-Ray Bursts: The Underlying Model

    Full text link
    A pedagogical derivation is presented of the ``fireball'' model of gamma-ray bursts, according to which the observable effects are due to the dissipation of the kinetic energy of a relativistically expanding wind, a ``fireball.'' The main open questions are emphasized, and key afterglow observations, that provide support for this model, are briefly discussed. The relativistic outflow is, most likely, driven by the accretion of a fraction of a solar mass onto a newly born (few) solar mass black hole. The observed radiation is produced once the plasma has expanded to a scale much larger than that of the underlying ``engine,'' and is therefore largely independent of the details of the progenitor, whose gravitational collapse leads to fireball formation. Several progenitor scenarios, and the prospects for discrimination among them using future observations, are discussed. The production in gamma- ray burst fireballs of high energy protons and neutrinos, and the implications of burst neutrino detection by kilometer-scale telescopes under construction, are briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure

    Mathematics of Gravitational Lensing: Multiple Imaging and Magnification

    Full text link
    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of General Relativity and Gravitatio

    Triggering Threshold Spacecraft Charging with Changes in Electron Emission from Materials

    Get PDF
    Modest changes in spacecraft charging conditions can lead to abrupt changes in the spacecraft equilibrium, from small positive potentials to large negative potentials relative to the space plasma; this phenomenon is referred to as threshold charging. It is well known that temporal changes of the space plasma environment (electron plasma temperature or density) can cause threshold charging. Threshold charging can also result from by temporal changes in the juxtaposition of the spacecraft to the environment, including spacecraft orbit, orientation, and geometry. This study focuses on the effects of possible changes in electron emission properties of representative spacecraft materials. It is found that for electron-induced emission, the possible threshold scenarios are very rich, since this type of electron emission can cause either positive or negative charging. Alternately, modification of photon- or ion-induced electron emission is found to induce threshold charging only in certain favorable cases. Changes of emission properties discussed include modifications due to: contamination, degradation and roughening of surfaces and layered materials; biasing and charge accumulation; bandstructure occupation and density of states caused by heat, optical or particle radiation; optical reflectivity and absorptivity; and inaccuracies and errors in measurements and parameterization of materials properties. An established method is used here to quantitatively gauge the relative extent to which these various changes in electron emission alter a spacecraft’s charging behavior and possibly lead to threshold charging. The absolute charging behavior of a hypothetical flat, two-dimensional satellite panel of a single material (either polycrystalline conductor Au or the polymeric polyimide Kapton™ H) is modeled as it undergoes modification and concomitant changes in spacecraft charging in three representative geosynchronous orbit environments, from full sunlight to full shade (eclipse) are considered
    • …
    corecore